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Computer-Aided Eulerian Air Traffic Flow Modeling
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Eulerian models are used to represent the air traffic environment as traffic flows between interconnected control
volumes representing the airspace system. Although these models can be manually derived for simple air traf-
fic patterns, computer-based approaches are essential for modeling realistic airspaces involving multiple traffic
streams. Starting from the specification of a few airspace parameters and traffic data, the developed computer-
aided modeling technique can automatically construct Eulerian models of the airspace. The synthesis of air traffic
flow control algorithms using the model predictive control technique in conjunction with these models is given.
It is shown that the flow control logic synthesis can be cast as a linear programming problem. The flow control
methodology is illustrated using air traffic data over two regions in U.S. airspace.

I. Introduction

T HE development of an Eulerian (see Ref. 1) approach to mod-
eling air traffic was discussed in recent research efforts (see

Refs. 2 and 3). These works were motivated by research initiatives
currently underway4,5 within the air traffic management (ATM) re-
search community to develop decision support tools for analyzing
and controlling air traffic flow, to manage more efficiently opera-
tions of the U.S. National Airspace System (NAS). The focus of the
present paper is on the development of a computer-aided methodol-
ogy for deriving Eulerian models of the airspace and employing it
for air traffic flow control. The approach uses the NASA-developed
Future ATM Concepts Evaluation Tool6 (FACET) software as its
foundation.

The Eulerian approach models the airspace in terms of line el-
ements approximating airways, together with merge and diverge
nodes. Because this modeling technique spatially aggregates the air
traffic, the order of the airspace model depends only on the num-
ber of line elements used to represent the airways and not on the
number of aircraft operating in the airspace. Eulerian models are in
the form of linear, time-varying difference equations.

A one-dimensional modeling methodology is an intuitive ap-
proach for deriving models of traffic flow networks formed by jet
routes and Victor airways. However, not all aircraft in the airspace
strictly follow the jet routes or Victor airways. This situation is likely
to continue in the future as more aircraft opt to fly wind-optimal
routes to their destinations.7 This introduces the need for a more flex-
ible modeling framework. This framework, first advanced in Ref. 2,
discretizes the airspace into surface elements (SEL), within which
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the traffic flow is aggregated into eight different directions. This
modeling provides adequate fidelity in en route airspace in which
the traffic flow is largely two dimensional. The traffic at all flight
levels in class A airspace [at or above 18,000 ft (5500 m)] is classi-
fied as belonging to any one of these eight directions, with inflows
and outflows from airports and other external sources. Each SEL
is connected to its eight neighbors, with the connection strengths
being determined by the actual traffic flow patterns.

Eulerian models are then derived by examining traffic flows
into and in between the SELs over a specified sample time in-
terval. These models are then used for analysis and flow control
system design. Details of the modeling approach will be given in
Sec. II. It has been shown in Refs. 2 and 3 that the Eulerian mod-
els can be used to carry out a variety of analyses on the air traffic
flow, such as controllability, reachability, and model decentraliza-
tion.

An important application of the Eulerian models is in devel-
opment of quantitative decision support tools for air traffic flow
control. Very little research has been conducted on the use of au-
tomatic control theory for the ATM problem.7,8 The present re-
search represents an initial attempt and explores the application of
the model-predictive control (MPC) technique9−11 to the air traffic
flow control problem. Alternate control approaches are applicable
to this problem. This will be explored in future research efforts.
Section III presents a discussion of the air traffic flow control using
the MPC technique, together with two examples. Conclusions from
the present research are given in Sec. IV.

II. Computer-Aided Eulerian Air Traffic
Flow Modeling

The Eulerian modeling process begins with the definition of a
grid of SELs covering the region of airspace being modeled. The
SEL grid is defined by latitude–longitude tessellation on the surface
of the Earth in geocentric polar coordinates. Each surface element
has equal angular dimensions in longitude and latitude as shown in
Fig. 1. However, due to the spherical nature of the airspace being
modeled, SELs far north or south of the equator will have smaller
physical dimensions than those near the equator. All of the results
reported in this paper are based on 1◦ latitude–longitude increments.
The eight different en route traffic flow directions within each SEL
are indicated in Fig. 2. In addition to these, the SELs above air-
ports will include one output stream for landing aircraft. The air-
craft taking off from airports under an SEL are included in one of the
eight en route traffic flow directions. SELs lying on the boundary of
the airspace being modeled will have additional inputs representing
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Fig. 1 Latitude–longitude tessellation used in Eulerian flow modeling.

Fig. 2 Traffic flow directions in an
SEL (i, j).

traffic entering the system from unmodeled airspace, for example,
international flights.

Because the present form of the Eulerian model is discrete in space
and time, a sample interval τ must also be specified. Although the
spatial and temporal discretizations are based mainly on the level
of detail desired in the model, due to the assumption that each SEL
is connected to only eight of its neighbors, the sample time interval
must be chosen so that no aircraft in an SEL travels beyond its
immediate neighbors in a sample interval. Thus, the dimensions
of the smallest SEL and the airspeed of the fastest aircraft in the
airspace determine the acceptable sample interval.

As in Refs. 2 and 3, the air traffic flow pattern is modeled within
each SEL using two sets of parameters. The first of these are the
inertia parameters ai jmm(k), where the first two subscripts denote the
particular surface element (i, j), the second two subscripts denote
the stream numbers within that element, and the dependence on k
denotes the time interval. There is one parameter for each of the
eight streams representing the fraction of the aircraft that remained
in the SEL from the previous sample time. By definition, in any
stream i , the fraction of aircraft that left the SEL in the previous
sample interval is given by [1 − ai jmm(k)].

The second set of parameters contains the flow divergence param-
eters βi jmn(k) representing the aircraft that switched streams from m
to n within the SEL (i, j) in the time interval k. Because the aircraft
in a stream may stay in it, or switch to any of the other seven en route
streams, or land at an airport, for a given SEL there is a matrix of
9 × 8 = 72 flow divergence parameters. To satisfy the principle of
conservation of aircraft in an SEL, for each stream n the divergence
parameters to all of the outputs must add up to unity, that is,

9∑

m = 1

βi jmn(k) = 1 (1)

Fig. 3 Eulerian model of an air traffic stream in an SEL.

Note that for each n, one of the βi jmn(k) is not independent. By
convention, let

βi jnn(k) = 1 −
9∑

m = 1
m �= n

βi jmn(k) (2)

It is assumed that an aircraft will nominally remain in the same
stream, and so the default values of the divergence parameters are

βi jmn(k) =
{

1, m = n

0, m �= n
(3)

Figure 3 illustrates the model of a stream in an SEL. The dynamics
of the air traffic flow in an SEL can be described using the inertia
parameters and the divergence parameters, through the principle
of conservation of aircraft. For instance, the difference equation
describing the air traffic flow in the easterly stream in the surface
element (i, j) can be derived as2,3

x(i, j,3)(k + 1) = ai j33(k)

8∑

m = 1

βi j3m(k)x(i, j,m)(k) + τu(i, j,3)(k)

+ τ y(i, j − 1,3)(k) + τqdepart
(i, j,3)(k) + τqexo

(i, j,3)(k) (4)
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In this equation, x(k) denotes the number of aircraft in the stream at
the sample instant k, u(k) are the aircraft flow rates held back in the
stream through flow control actions, y( ) is the air traffic flow rate
from the neighboring SEL, qdepart is the air traffic flow rate entering
the SEL and joining the stream from airports under the SEL, and
qexo is the air traffic flow rate entering the stream from outside the
modeled airspace, excluding departure traffic. The flow rates qexo

are inputs that are not controlled, whereas the departures qdepart

may be controlled. The control variables in this equation are the air
traffic flow rates u(k) for metering actions and can also include the
departure traffic flow rates qdepart from the airports under the SEL.
Note that flow rates q are always positive by physical constraint and
that the controls u are always positive by convention (flow subtracted
from the output of the stream and added back to the input).

The en route output equations for an SEL can be written as

y(i, j,m)(k) =
[

1 − ai jmm(k)

τ

] 8∑

n = 1

βi jmn(k)x(i, j,n)(k)

− u(i, j,m)(k), m = 1, 2, . . . , 8 (5)

Moreover, the landing air traffic flow rates into the airports under
the SEL are given by

y(i, j,m)(k) = 1

τ

8∑

n = 1

βi jmn(k)x(i, j,n)(k), m = 9 (6)

Several SELs are required to model realistic airspaces. In the
present work, the numbering convention of the SELs (i, j) is that
the index j is increasing from left to right, in the easterly direction,
and i is increasing from bottom to top, in the northerly direction. In
this work, the surface elements are used to model class A airspace
(from 18,000 to 60,000 ft) (Ref. 12). Air traffic flow models of
several SELs can be combined to form the overall Eulerian model
of the airspace and can expressed in a compact form as

x(k + 1) = A(k)x(k) + Bu(k) + Bdqdepart(k) + Beqexo(k) (7)

The departure traffic may be subdivided according to those airports
where they will be controlled by a ground delay program and where
they will not. It is assumed that external traffic qexo cannot be con-
trolled directly. If the controlled inputs are combined into a vector
v(k), and all other inputs are collected together into a disturbance
vector w(k), the dynamic equation for the airspace is of the form

x(k + 1) = A(k)x(k) + B1v(k) + B2w(k) (8)

The state vector x(k) can be initialized using traffic data and then
propagated forward in time. These equations can be used to facilitate
analysis and synthesis of flow control strategies. Typically, not all
states are of interest for analysis or for flow control. An output
equation can be formulated to provide the variables of interest as

y(k) = C(k)x(k) + D1v(k) (9)

The Eulerian air traffic flow model consists of the time-varying
difference equation for the state vector and the time-varying alge-
braic equation for the output vector. These equations can be formu-
lated for SELs in any desired region of the NAS and combined to
form a basis for analysis and flow-control system design.

Whereas the Eulerian modeling process is intuitively simple to
carry out, it is impractical to derive these models manually for
airspaces containing more than a few SELs. During the present re-
search, a computer-aided modeling technique has been developed to
derive Eulerian models of arbitrary dimension automatically using
the FACET software as the traffic propagation engine.

When started with a specification of the airspace boundaries, SEL
size, and sample time interval, the first step in the modeling process
is that of determining the location of every aircraft in the airspace
with respect to the SEL grid. Within each SEL, the heading angle

of aircraft is then used to sort them into one of the eight streams.
As an additional criterion, this determination may also be based on
the SELs they are likely to occupy at the end of the sample time
interval. This provides the initial condition for the Eulerian model.

Next, the aircraft trajectories are propagated using the FACET
software for one sample interval. The new locations of the aircraft
in the SELs, together with the aircraft location data at the beginning
of the sample interval, are then used to compute the inertia and di-
vergence parameters for each SEL during the sample time duration.
This process is repeated for the next sample time and so on, for the
total time duration of interest.

Note that FACET uses the actual flight plans of the aircraft, along
with changes made by air traffic control (ATC), to propagate their
positions. The determination of the values of the coefficients and the
state variables is simply a bookkeeping procedure; thus, without any
control action, the model is exact at each sample time. The model
will change in subsequent intervals when the controls are applied,
and so the model needs to be updated in that case. The reason for
using FACET to determine the traffic flow parameters, instead of
statistics from historical data, is that the model will be more accurate
for control purposes. The control strategy, to be discussed in the
following sections, is meant to be used in real time with the most
current information, and FACET, given current flight plans, can
provide a sufficiently accurate prediction of the trajectories of the
aircraft, which in turn produces a reliable Eulerian model. As long
as FACET has the most current information, there are essentially
no uncertainties in the model, within the given resolution, and all
disturbances are measurable. Uncertainties arise if the data used to
initialize FACET are not accurate, or if an aircraft deviates from its
declared flight plan.

A flowchart of the automatic modeling methodology is shown in
Fig. 4. The modeling algorithm has been implemented in the form
of a software package called MAESTRO. When started with the
specifications of a few parameters, this software package enables
the user to construct models of arbitrary size. The software also in-
corporates linear algebraic algorithms13 to help carry out controlla-
bility, observability, reachability, order reduction, decentralization,
and covariance analysis. All of the results given in this paper were
generated using this software package.

III. Model Predictive Air Traffic Flow Control
One of the objectives of the present research is to demonstrate

the application of Eulerian models for the synthesis of closed-loop
air traffic flow control algorithms. These algorithms can initially be
used as decision support tools, and, as other airspace automation
initiatives4,5 mature in the future, they could be used in a more
automated mode. A block diagram illustrating the components of
the air traffic flow control system is shown in Fig. 5.

Closed-loop air traffic flow control logic helps to achieve the
desired traffic flow rates at arrival airports and to keep local traffic
densities within limits in the national airspace by regulating the
departures at airports and by modulating the flow through metering

Fig. 4 Flowchart of the automatic Eulerian air traffic flow modeling
methodology.
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Fig. 5 Air traffic flow control system.

regions in the airspace. If the traffic density is low except at isolated
time intervals and the flow control problems are localized, effective
flow control can be achieved using simple strategies. However, as
the traffic density increases, purely heuristic approaches may result
in undesirable flow fluctuations in the airspace, and tools for flow
control become important. Note that the traditional approach to air
traffic flow control in the NAS is primarily through heuristic means.

Although sophisticated decision support tools14 have been devel-
oped to manage aircraft trajectories, computational tools to manage
traffic flows have not yet reached comparable levels of maturity. This
section will demonstrate how the Eulerian models can be used to
design en route flow control strategies. Because of the high order of
the system’s dynamics, its time-varying nature, and the constraints,
the air traffic flow control is a challenging problem. Although it is
feasible to consider the application of techniques such as linear-
quadratic optimal control theory, the high order and the presence of
multiple inequality constraints will make their use awkward in this
problem. Ideally, an ATC strategy should be to able handle the entire
NAS. For the present research, the MPC technique9−11 was chosen
for the flow control algorithm synthesis. MPC strategies have been
in use for a number of years in the control of chemical processing
plants, where there are often a large number of state variables, in-
puts, and outputs, along with constraints. Interestingly, the update
rate for some of these control systems is on the same order as that
anticipated in the air traffic flow control problems.

The basic idea in the MPC technique is to use a model of the
system to predict the outputs up to N steps ahead (prediction hori-
zon) using a nominal control policy. Nominal control policies are
often adopted as either zero or constant values of control, subject to
the control constraints. Next, an optimization problem is solved to
determine the values of control that will minimize the error between
the actual and the desired values of the outputs over the prediction
horizon.

The Eulerian air traffic flow model over multiple time steps can
be used to assemble an output predictor readily as

ỹ = Mx x(k) + Muũ + Mdq̃d (10)

where

ỹ =





y(k)

y(k + 1)
...

y(k + N )



 , ũ =





u(k)

u(k + 1)
...

u(k + N )





q̃d =





qdepart(k) + exo(k)

qdepart(k + 1) + exo(k + 1)
...

qdepart(k + N ) + qexo(k + N )




(11)

Mx =





C0

C1 A0

C2 A1 A0

C3 A2 A1 A0
...

CN AN − 1 A0





Mu =





D0 0 0 0 · · ·
C1 B0 D1 0 0 · · ·

C2 A1 B0 C2 B1 D2 0 · · ·
C3 A2 A1 B0 C3 A2 B1 C3 B2 D3

...
. . .

CN AN − 1 · · · B0 · · · DN





(12)

Md =





0 0 0 0

τC1 0 0 0

τC2 A1 τC2 0 0

τC3 A2 A1 τC3 A2 τC3 0
...

. . .

τCN AN − 1 A1 . . . 0





(13)

where An, Bn, Cn , and Dn are from Eqs. (8) and (9) at time step
k + n. A set of performance variables yperf is defined next. These
performance variables represent the traffic flows that the MPC al-
gorithm expects to control, and they can be individual air traffic
flows in specific SELs or linear combinations of traffic flows into
airports or regions of interest in the en route airspace.

The essence of MPC is that, at each time step over the prediction
interval, it is desired to minimize the difference between the actual
values of the performance variables and the desired or commanded
values yd using the control variables. The variables comprising yperf

and its desired values yd are selected based on the specific air traffic
flow control objectives.

For the present work, the 1-norm is a suitable choice for the
minimization problem in terms of the performance variables and
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their desired values. As a consequence, the optimization problem
can then be cast as a linear programming problem. The objective of
the air traffic flow control problem is to minimize

‖ỹd − ỹperf‖1 =
(N + 1)p∑

i = 1

∣∣ỹdi − ỹperfi

∣∣ (14)

with p being the number of performance variables included in the
flow control problem. Note that the performance variables can be
cast as yperf = Yp y for some matrix Yp , and ỹperf = Ỹp ỹ where Ỹp is
a block-diagonal matrix with Yp comprising the N + 1 blocks. With
this definition, the expression for the performance variables can be
written as

ỹperf = Ỹp Mx x(k) + Ỹp Muũ + Ỹp Mdq̃d (15)

In this case, the linear programming problem can then be expressed
as

min
γ,ũ

[1 0]

[
γ

ũ

]

subject to

[
I Ỹp Mu

I −Ỹp Mu

][
γ

ũ

]
+

[
Ỹp Mx x(k) + Ỹp Mdq̃d − ỹd

−Ỹp Mx x(k) − Ỹp Mdq̃d + ỹd

]
≥ 0 (16)

The vector γ consists of bounding variables, one variable for each
term in the 1-norm. Note that the symbol 1 in the cost function
represents a row vector of ones and I in the inequality is an identity
matrix.

Additional constraints in the problem are that the controls must be
greater than or equal to zero to be physically meaningful. Because
the controls are part of the solution vector, the lower bounds can
be handled directly. Another constraint is that the outflows in the
streams where metering is taking place must be greater than or equal
to zero, which in effect defines the upper bounds on the controls.
Because these upper bounds are dependent on the state of the system,
they cannot be specified directly and must be included as constraint
equations. Let these constrained outputs be defined as yc = Yc y with
Yc being a matrix of zeros and ones, and let ỹc = Ỹc ỹ, where Ỹc is
a block-diagonal matrix with Yc comprising the N + 1 blocks. The
additional constraint equation is

[0 Ỹc Mu]

[
γ

ũ

]
+ [

Ỹc Mx x(k) + Ỹc Mdq̃d
] ≥ 0 (17)

This constraint equation augments the preceding equations. The
linear programming problem that the software used here solves is
actually

min
z

cT z, subject to Fz = g, zlower ≤ z ≤ zupper (18)

The vector z contains the unknowns and ( )T represents the transpose
of a vector or matrix. Slack variables are introduced as in standard
linear programming problems to transform the inequality constraints
into equality constraints. The linear programming problem for the
MPC problem is then formed as follows. Let the vector of unknown
quantities be

zT = [γT ũT rT sT tT ] (19)

where r, s, and t are column vectors of slack variables of dimensions
(N + 1)p, (N + 1)p, and (N + 1)m, respectively, where m is the
number of control inputs,

cT = [1 0] (20)

where 1 is length (N + 1)p and 0 is length (N + 1)(2m + 2p) and

F =




I Ỹp Mu −I 0 0

I −Ỹp Mu 0 −I 0

0 Ỹc Mu 0 0 −I





g =




−Ỹp Mx x(k) − Ỹp Mdq̃d + ỹd

Ỹp Mx x(k) + Ỹp Mdq̃d − ỹd

−Ỹc Mx x(k) − Ỹc Mdq̃d



 (21)

For the controls, the lower bounds are zero, and although the upper
bounds are determined by constraints, a value of 50 aircraft/step
was specified as a practical measure. The lower bounds on the slack
variables are set to zero, and the upper bounds are set to a large
number, 1032, in the present work. Likewise, the lower bounds on
the bounding variables are set to zero, and the upper bounds are set
to a large number, 1032.

In the case where departure controls are included, the appropriate
columns of ỹp Md appear in the F matrix on the left-hand side of the
constraint equation, and an additional constraint is needed. Whereas
the requirement that the output must be nonnegative could be used,
in this case the maximum value of the control is determined by the
number of departures in that stream where control is being applied.
This gives a simpler expression to implement. Let ˆ̃qd be the subset
of departures where control is to be applied, and let ũd be the subset
of the controls applied to the departures. Then the constraint is

ˆ̃qd − ũd ≥ 0 (22)

Because this is an inequality, another set of slack variables must be
added so that the vector of unknowns becomes

zT = [γT ũT rT sT tT vT ] (23)

For simplicity of notation, it will be assumed that the control vector
is partitioned so that the metering controls for the prediction horizon
[k, k + N ] are first, and the departure controls over the same interval
are second, that is,

ũ =
[

ũm

ũd

]
(24)

Let M̂d be the matrix composed of the columns of Md corresponding
to the departures where control is applied. Then the left- and right-
hand sides of the constraint equations are of the following form:

F =





I Ỹp Mu Ỹp M̂d −I 0 0 0

I −Ỹp Mu −Ỹp M̂d 0 −I 0 0

0 Ỹc Mu −Ỹc M̂d 0 0 −I 0

0 0 −I 0 0 0 −I





g =





−Ỹp Mx x(k) − Ỹp Mdq̃d + ỹd

Ỹp Mx x(k) + Ỹp Mdq̃d − ỹd

−Ỹc Mx x(k) − Ỹc Mdq̃d

−ˆ̃qd




(25)

The linear programming problems for various air traffic flow con-
trol situations formulated in this section are solved using a soft-
ware package called PCx from Argonne National Laboratory.15 This
software has been integrated into the Eulerian modeling software
MAESTRO mentioned in the preceding section.

A flowchart of the model predictive air traffic flow control algo-
rithm is shown in Fig. 6. Because the coefficients of the Eulerian
model used for MPC are derived from the traffic data, the applica-
tion of controls will change the traffic flow. This will in turn cause
changes in the model. To synthesize correct control decisions for the
next sample, the model coefficients must be recomputed using the
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Fig. 6 Model predictive air traffic flow control using Eulerian model.

Fig. 7 Metering controls in the vicinity of DFW Airport.

air traffic resulting from the application of controls in the preceding
sample. Thus, every control action must be followed by the recom-
putation of the model coefficients, that is, FACET is rerun with the
controls in place. The new model must then be used in the MPC
flow control methodology.

The following subsections will illustrate two different air traffic
flow control examples using the MPC methodology.

A. Example 1: Dallas–Fort Worth Area Metering
The objective of this example is to regulate the air traffic flow

descending into the area surrounding the Dallas–Ft. Worth (DFW)
Airport for the time period between 1200 and 1400 hrs on a typical
day. Figure 7 illustrates the region under consideration. The SELs
included in the control problem are outlined. The airport is repre-
sented near the middle of Fig. 7. The surface elements are 1◦ by 1◦, or
approximately 60 n miles north–south by 50 n miles east–west. The
sample time interval is 6 min. The metering locations are indicated
by hourglass symbols and the directions are indicated by short line
segments in Fig. 7. There are a total of 40 controls, which were se-
lected in part by observing the traffic flow over the specified period.
The Eulerian traffic flow model has 512 state variables. (Although
36 SELs are shown, a boundary layer of SELs around the perimeter
of the area is added for computational purposes, giving 64 SELs × 8
streams = 512 state variables.) The arrivals into the DFW area are
assumed to be those aircraft descending from class A airspace in the
16 innermost SELs. For simplicity, the descending traffic streams
are summed by quadrants (NW, NE, SE, and SW) as outlined with
dashed lines in Fig. 7, resulting in four outputs to be controlled.

The time histories of the outputs without flow control inputs are
shown in Fig. 8. Note that the flow rates do not follow any particular
pattern. The MPC strategy is implemented next, with the require-
ment that the desired flow rate for each quadrant be less than or

Fig. 8 Air traffic flows into DFW Airport area without metering.

Fig. 9 Air traffic flows into DFW Airport area with metering.

equal to two aircraft/step. The prediction horizon is four time steps.
The time histories of the aircraft flows for the four quadrants under
closed-loop control are shown in Fig. 9. Note that the flow rates are
much more regular but the control objectives are not strictly satisfied
at all time steps. Note that it is not possible to achieve exact control
because the metering controls are constrained and that the flow is
not metered in all possible directions.

In the foregoing discussions, the aircraft flows in four separate
zones were regulated. An alternative control objective is the regula-
tion of the total traffic flow into the DFW area. In view of this, the
MPC problem is reformulated with one output defined as the sum of
all 16 landing outputs and requiring the desired flow rate to be less
than or equal to eight aircraft/sample. The model predictive flow
control then produces the time history shown in Fig. 10. Figure 10
also indicates the aircraft flow without control.

As in the preceding case, the present control objective is strictly
met only at certain samples. However, the flow rate much more
regular under closed-loop control. Achieving a better flow control
may require the introduction of additional metering SELs in the
modeled region and/or more metering directions in existing SELs.

B. Example 2: Air Traffic Density Control in a Region
A flow control problem that sometimes arises in the NAS is that

of maintaining the density of air traffic in certain regions below a
certain specified level to limit the workload on the human air traffic



18 MENON ET AL.

Fig. 10 Air traffic flow rate into DFW Airport area under metering.

Fig. 11 SEL considered in traffic density control example.

controller. This example illustrates how the MPC methodology can
be used for traffic density control. For illustrative purposes, in this
example, the aircraft density in a single surface element will be
regulated. Extending this approach to multiple surface elements is
straightforward.

The traffic density is defined in this paper as the total number of
aircraft within an SEL at a sample instant. Because the airspace vol-
ume represented by the SEL is known, the actual traffic density/unit
volume and the total aircraft count are proportional. The density is
computed by summing the aircraft in each of the eight streams in
the SEL of interest. For the present example, the SEL of interest is
between 33◦ and 34◦ north latitude and 82◦ and 83◦ west longitude,
an area east of Atlanta’s Hartsfield Airport. This region was selected
arbitrarily among those that appeared to have a steady flow of traf-
fic. Metering points were chosen at the streams in neighboring SELs
that feed into the controlled SEL. The SEL of interest is shown in
Fig. 11. Figure 11 has 200 states (including the boundary layer) and
8 controls.

Note that metering controls have been placed in neighboring SELs
in directions pointing toward the SEL. The desired density is four
aircraft or less within the SEL, and the prediction horizon is two time
steps (6 min/step). A comparison of the controlled and uncontrolled
densities is shown in Fig. 12. The MPC-based controller is able to
maintain the desired density to within two aircraft or less and, for
the most part, one or less.

Fig. 12 Density control results.

The two examples given in this section illustrate the MPC-based
air traffic flow control logic synthesis. Although the performance of
the MPC controllers was satisfactory, significant improvements are
possible through additional analysis of the Eulerian models.

Validation of the model and the control algorithm remains an is-
sue. To validate the Eulerian model, actual data could be used and
compared with predictions from the linear models, similar to the
methodology in Ref. 16. Validation of the control actions presents
additional challenges. One way might be to obtain the actual data
flight, including the original flight plans and the metering subse-
quently applied by ATC, and then to simulate the same scenario
and compare the controls generated by the algorithm with the actual
controls. Note that the proposed approach deals only with the gross
behavior of the aircraft as they move from one SEL to another and
does not determine specific speed and/or heading commands that
would be used to achieve metering.

One possible limitation of the proposed approach is that it mod-
els the airspace using a rectangular grid, whereas en route air traffic
control is currently implemented by sectors, that are far from rectan-
gular. Therefore, the control actions generated by the present method
may have some ambiguity in where they should be applied in the
existing sector layout. The present modeling methodology can be
refined to handle this situation by using finer grid size and defining
additional output equations.

IV. Conclusions
This paper presented the development of a computer-aided

Eulerian air traffic flow modeling methodology and its application
to deriving quantitative flow control strategies. The flow control
algorithms can initially be used as decision support tools, and, as
other airspace automation initiatives mature in the future, they could
possibly be used in a more fully automatic mode.

The Eulerian modeling methodology divides the airspace into in-
terconnected SELs, and the dynamics of the traffic flow through
and between these SELs is then derived by invoking the princi-
ple of conservation. Although the Eulerian approach preserves no
information on the motion of individual aircraft, it provides a con-
venient formalism for aggregating air traffic flow information. An
automatic procedure for deriving the Eulerian models from individ-
ual aircraft trajectories was developed during the present research.
In this approach, the user provides inputs such as the region of the
national airspace to be modeled, spatial discretization, sample time,
metering locations, airports subject to departure control, the output
locations, and the time interval of interest. The automatic modeling
procedure then uses the FACET software to assemble the Eulerian
model. A software package MAESTRO has been developed and in-
tegrated into FACET to assist the user in automatically constructing
Eulerian air traffic flow models.

By aggregation of the traffic information in the form of discrete-
time, linear time-varying models, the Eulerian model enables several



MENON ET AL. 19

types of useful analyses of the traffic flow in the airspace, as well
as feedback control methods. The MPC technique was employed in
conjunction with the Eulerian model to synthesize air traffic flow
control algorithms. The MPC technique uses the Eulerian model
to make predictions over a specified time horizon about the future
values of performance variables under a nominal control policy. An
optimization technique is then used to refine the nominal control
policy to achieve the desired values of states and outputs.

The present research considered the 1-norm of the error between
desired and predicted performance variables as the performance in-
dex. Inequality constraints were specified on the control variables
and output variables. Because Eulerian models are linear, the result-
ing optimization problem is in the form of a linear program. This
linear programming problem was then solved using a well-known
software package. Flow control synthesis for two different control
objectives was then demonstrated.

This paper demonstrated that it is feasible to use Eulerian air
traffic flow models for analysis and flow control system synthesis.
The methodology given here can be readily tailored to practical
traffic flow control problems to improve the efficiency of en route air
traffic flow control in the next-generation ATC system. Investigation
of alternate control techniques and model accuracy improvements
will be of future interest.
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